The motion reverse correlation (MRC) method: a linear systems approach in the motion domain.
نویسندگان
چکیده
We introduce the motion reverse correlation method (MRC), a novel stimulus paradigm based on a random sequence of motion impulses. The method is tailored to investigate the spatio-temporal dynamics of motion selectivity in cells responding to moving random dot patterns. Effectiveness of the MRC method is illustrated with results obtained from recordings in both anesthetized cats and an awake, fixating macaque monkey. Motion tuning functions are computed by reverse correlating the response of single cells with a rapid sequence of displacements of a random pixel array (RPA). Significant correlations between the cell's responses and various aspects of stimulus motion are obtained at high temporal resolution. These correlations provide a detailed description of the temporal dynamics of, for example, direction tuning and velocity tuning. In addition, with a spatial array of independently moving RPAs, the MRC method can be used to measure spatial as well as temporal receptive field properties. We demonstrate that MRC serves as a powerful and time-efficient tool for quantifying receptive field properties of motion selective cells that yields temporal information that cannot be derived from existing methods.
منابع مشابه
Comparison between linear and nonlinear models for surge motion of TLP
Tension-Leg Platform (TLP) is a vertically moored floating structure. The platform is permanently mooredby tendons. Surge equation of motion of TLP is highly nonlinear because of large displacement and it should be solved with perturbation parameter in time domain. This paper compare the dynamic motion responses of a TLP in regular sea waves obtained by applying three method in time domain usin...
متن کاملSeismic Amplification of Peak Ground Acceleration, Velocity, and Displacement by Two-Dimensional Hills
There are valuable investigations on the amplification effects of the topography on the seismic response in the frequency domain; however, a question is that how one can estimate the amplification of time domain peak ground acceleration (PGA), peak ground velocity (PGV), and peak ground displacement (PGD) over the topographic structures. In this study, the numerical approach has been used for t...
متن کاملA Novel Temporal-Frequency Domain Error Concealment Method for Motion Jpeg
Motion-JPEG is a common video format for compression of motion images with highquality using JPEG standard for each frame of the video. During transmission through a noisychannel some blocks of data are lost or corrupted, and the quality of decompression frames decreased.In this paper, for reconstruction of these blocks, several temporal-domain, spatial-domain, andfrequency-domain error conceal...
متن کاملThe Effects of Different SDE Calculus on Dynamics of Nano-Aerosols Motion in Two Phase Flow Systems
Langevin equation for a nano-particle suspended in a laminar fluid flow was analytically studied. The Brownian motion generated from molecular bombardment was taken as a Wiener stochastic process and approximated by a Gaussian white noise. Euler-Maruyama method was used to solve the Langevin equation numerically. The accuracy of Brownian simulation was checked by performing a series of simulati...
متن کاملA study on the use of perturbation technique for analyzing the nonlinear forced response of piezoelectric microcantilevers
In this paper, a comparison is made between direct and indirect perturbation approaches to solve the non-linear vibration equations of a piezoelectrically actuated cantilever microbeam. In this comparison, the equation of motion is considered according to Euler-Bernoulli theory with considering the non-linear geometric and inertia terms resulted from shortening effect. In the direct perturbatio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of neuroscience methods
دوره 123 2 شماره
صفحات -
تاریخ انتشار 2003